MATH 10C FORMULA SHEET

Metric \& Imperial Conversion Factors

Relationships between Imperial Units	Approximate Relationships between Imperial Units and Metric Units	Relationships between Metric Units
1 mile $=1760$ yards 1 mile $=5280$ feet	1 mile $=1.609 \mathrm{~km}$ $1 \mathrm{~km}=0.6214 \mathrm{miles}$	$1 \mathrm{~km}=1000 \mathrm{~m}$
1 yard $=3$ feet	1 yard $=0.9144 \mathrm{~m}$	
1 yard $=36$ inches	$1 \mathrm{~m}=1.094 \mathrm{yd}$	$1 \mathrm{~m}=100 \mathrm{~cm}$
1 foot $=12$ inches	$1 \mathrm{foot}=0.3048 \mathrm{~m}=30.48 \mathrm{~cm}$	$1 \mathrm{~cm}=10 \mathrm{~mm}$
$1 \mathrm{~m}=3.281 \mathrm{ft}$		

Area, Surface Area and Volume Formulas

Area: Rectangle $A=l w \quad$ Triangle $A=\frac{1}{2} b h \quad$ Circle $A=\pi r^{2}$

Shape	Shape	Volume	Surface Area
	Rectangular prism	$V=l w h$	$S A=2(l w+l h+w h)$ or $S A=2 l w+2 l h+2 w h$
	Cyight pyramid	$V=\frac{1}{3} l w h$	$S A=\frac{1}{2}($ slant $h g t)($ perimeter of base $)+($ area of base $)$
	Cone	$V=\pi r^{2} h$	$S A=2 \pi r h+2 \pi r^{2}$
	Sphere	$V=\frac{1}{3} \pi r^{2} h$ $V=\frac{1}{3} \pi r^{3}$	$S A=\pi r s+\pi r^{2}$

Pythagorean Theorem

$$
c^{2}=a^{2}+b^{2}
$$

Trigonometric Ratios

$$
\sin A=\frac{\text { opposite }}{\text { hypotenuse }} \quad \cos A=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan A=\frac{\text { opposite }}{\text { adjacent }}
$$

Exponent Laws

Exponent Law	Rule
Product of Powers	$x^{m} \times x^{n}=x^{m+n}$
Quotient of Powers	$\frac{x^{m}}{x^{n}}=x^{m-n}$
Power of a Power	$\left(x^{m}\right)^{n}=x^{m \times n}$
Power of a Product	$(x y)^{m}=x^{m} y^{m}$
Power of a Quotient	$\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}}$
Zero Exponent	$x^{0}=1$
Negative Exponent	$x^{-m}=\frac{1}{x^{m}}$
Fractional Exponent	$x^{\frac{m}{n}}=\sqrt[n]{x^{m}}$ or $(\sqrt[n]{x})^{m}$

Linear Functions

$$
\text { slope }=\frac{\text { rise }}{\text { run }} \quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \text { slope }=\frac{\Delta y}{\Delta x}
$$

slope-intercept form $\quad y=m x+b$
general form
$A x+B y+C=0 \quad$ slope-point form $\quad\left(y-y_{1}\right)=m\left(x-x_{1}\right)$
standard form $\quad A x+B y=C$

